Artificial Intelligence in Healthcare

AI, Machine Learning, and Deep and Intelligent Medicine Simplified for Everyone

Academic Edition, Chapter 17 - References/Further Reading

 

  1. Holmes D. A new chapter in innovation. Nature. 2016 May 11;533(7602):S54-5.
  2. Son WS. Drug Discovery Enhanced by Artificial Intelligence. Biomedical Journal of Scientific & Technical Research. 2018;12(1):8936-8.
  3. Chan HS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends in pharmacological sciences. 2019 Aug 1;40(8):592-604.
  4. Liu B, He H, Luo H, Zhang T, Jiang J. Artificial intelligence and big data facilitated targeted drug discovery. Stroke and Vascular Neurology. 2019 Dec 1;4(4):206-13.
  5. Cerqueira NM, Gesto D, Oliveira EF, Santos-Martins D, Brás NF, Sousa SF, Fernandes PA, Ramos MJ. Receptor-based virtual screening protocol for drug discovery. Archives of biochemistry and biophysics. 2015 Sep 15;582:56-67.
  6. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015 Jul;20(7):13384-421..
  7. Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov. 2019;14(8):769–77.
  8. Dana D, Gadhiya SV, St Surin LG, Li D, Naaz F, Ali Q, Paka L, Yamin MA, Narayan M, Goldberg ID, Narayan P. Deep learning in drug discovery and medicine; scratching the surface. Molecules. 2018 Sep;23(9):2384.
  9. Lynch, Bothwell, Campbell L. A comparison of physical properties, screening procedures and a human efficacy trial for predicting the bioavailability of commercial elemental iron powders used for food fortification. International journal for vitamin and nutrition research. 2007 Mar 1;77(2):107-24.
  10. Andrysek T. Impact of physical properties of formulations on bioavailability of active substance: current and novel drugs with cyclosporine. Molecular immunology. 2003 Jul 1;39(17-18):1061-5.
  11. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering. Science. 2018 Jul 27;361(6400):360-5.
  12. Chai S, Liu Q, Liang X, Guo Y, Zhang S, Xu C, Du J, Yuan Z, Zhang L, Gani R. A grand product design model for crystallization solvent design. Computers & Chemical Engineering. 2020 Apr 6;135:106764.
  13. Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Frontiers in Chemistry. 2019;7.
  14. Tyrchan C, Evertsson E. Matched molecular pair analysis in short: algorithms, applications and limitations. Computational and structural biotechnology journal. 2017 Jan 1;15:86-90.
  15. Degen J, Wegscheid‐Gerlach C, Zaliani A, Rarey M. On the Art of Compiling and Using'Drug‐Like'Chemical Fragment Spaces. ChemMedChem: Chemistry Enabling Drug Discovery. 2008 Oct 20;3(10):1503-7.
  16. Pereira JC, Caffarena ER, dos Santos CN. Boosting docking-based virtual screening with deep learning. Journal of chemical information and modeling. 2016 Dec 27;56(12):2495-506.
  17. Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM. Extreme gradient boosting as a method for quantitative structure–activity relationships. Journal of chemical information and modeling. 2016 Dec 27;56(12):2353-60.
  18. Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855. 2015 Oct 10.
  19. Turk S, Merget B, Rippmann F, Fulle S. Coupling matched molecular pairs with machine learning for virtual compound optimization. Journal of chemical information and modeling. 2017 Dec 26;57(12):3079-85.
  20. Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B. Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. Journal of medicinal chemistry. 2006 Nov 16;49(23):6672-82.
  21. Warner DJ, Griffen EJ, St-Gallay SA. WizePairZ: a novel algorithm to identify, encode, and exploit matched molecular pairs with unspecified cores in medicinal chemistry. Journal of chemical information and modeling. 2010 Aug 23;50(8):1350-7.
  22. Lapins M, Arvidsson S, Lampa S, Berg A, Schaal W, Alvarsson J, Spjuth O. A confidence predictor for logD using conformal regression and a support-vector machine. Journal of cheminformatics. 2018 Dec 1;10(1):17.
  23. Dossetter AG. A statistical analysis of in vitro human microsomal metabolic stability of small phenyl group substituents, leading to improved design sets for parallel SAR exploration of a chemical series. Bioorganic & medicinal chemistry. 2010 Jun 15;18(12):4405-14.
  24. Keefer CE, Chang G, Kauffman GW. Extraction of tacit knowledge from large ADME data sets via pairwise analysis. Bioorganic & medicinal chemistry. 2011 Jun 15;19(12):3739-49.
  25. Schyman P, Liu R, Desai V, Wallqvist A. vNN web server for ADMET predictions. Frontiers in Pharmacology. 2017 Dec 4;8:889.
  26. Schönherr H, Cernak T. Profound Methyl Effects in Drug Discovery and a Call for New C H Methylation Reactions. Angewandte Chemie International Edition. 2013 Nov 18;52(47):12256-67.
  27. Aumentado-Armstrong T. Latent molecular optimization for targeted therapeutic design. arXiv preprint arXiv:1809.02032. 2018 Sep 5.
  28. Blomme EA, Will Y. Toxicology strategies for drug discovery: present and future. Chemical research in toxicology. 2016 Apr 18;29(4):473-504.
  29. Deshmukh RS, Kovács KA, Dinnyés A. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem cells international. 2012 Jan 1;2012.
  30. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning. Frontiers in Environmental Science. 2016 Feb 2;3:80.
  31. Adeleye Y, Andersen M, Clewell R, Davies M, Dent M, Edwards S, Fowler P, Malcomber S, Nicol B, Scott A, Scott S. Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment. Toxicology. 2015 Jun 5;332:102-11.
  32. Kazius J, McGuire R, Bursi R. Derivation and validation of toxicophores for mutagenicity prediction. Journal of medicinal chemistry. 2005 Jan 13;48(1):312-20.
  33. Blomme EA, Will Y. Toxicology strategies for drug discovery: present and future. Chemical research in toxicology. 2016 Apr 18;29(4):473-504.
  34. Klambauer G, Unterthiner T, Mayr A, Hochreiter S. DeepTox: Toxicity prediction using deep learning. Toxicol Lett. 2017;280:S69.
  35. Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S, Shoichet BK. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012 Jun;486(7403):361-7.
  36. Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology and Toxicology. 2019 Dec 1;20(1):2.
  37. Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life science alliance. 2018 Dec 1;1(6).
  38. Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends in pharmacological sciences. 2019 Sep 1;40(9):624-35.
  39. He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. Journal of cheminformatics. 2017 Dec;9(1):1-4.
  40. Huang YA, You ZH, Chen X. A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Current Protein and Peptide Science. 2018 May 1;19(5):468-78.
  41. Wang L, You ZH, Chen X, Yan X, Liu G, Zhang W. Rfdt: A rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Current Protein and Peptide Science. 2018 May 1;19(5):445-54.
  42. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019 Sep 25;119(18):10520–94.
  43. Wan F, Zeng JM. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv. 2016 Jan 1:086033.
  44. Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855. 2015 Oct 10.
  45. Jang JW, Cho NC, Min SJ, Cho YS, Park KD, Seo SH, No KT, Pae AN. Novel Scaffold Identification of mG lu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach. Chemical biology & drug design. 2016 Feb;87(2):239-56.
  46. Lian W, Fang J, Li C, Pang X, Liu AL, Du GH. Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models. Molecular diversity. 2016 May 1;20(2):439-51.
  47. Yao L, Evans JA, Rzhetsky A. Novel opportunities for computational biology and sociology in drug discovery: Corrected paper. Trends in biotechnology. 2010 Apr 1;28(4):161-70.
  48. Hu SS, Chen P, Wang B, Li J. Protein binding hot spots prediction from sequence only by a new ensemble learning method. Amino Acids. 2017 Oct 1;49(10):1773-85.
  49. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nature biotechnology. 2007 Feb;25(2):197-206.
  50. Donald BR. Algorithms in structural molecular biology. MIT Press; 2011 Jun 1.
  51. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry. 2009 Dec;30(16):2785-91.
  52. Jacob L, Vert JP. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics. 2008 Oct 1;24(19):2149-56.
  53. Johnson MA, Maggiora GM. Concepts and applications of molecular similarity. Wiley; 1990.
  54. Chen P, Hu S, Zhang J, Gao X, Li J, Xia J, Wang B. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction. IEEE/ACM transactions on computational biology and bioinformatics. 2015 Dec 3;13(5):901-12.
  55. Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics. 2010 Jun 15;26(12):i246-54.
  56. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R. Predicting new molecular targets for known drugs. Nature. 2009 Nov;462(7270):175-81.
  57. Atkins P, Overton T. Shriver and Atkins' inorganic chemistry. Oxford University Press, USA; 2010.
  58. Rogers DW. Computational Chemistry using the PC. John Wiley & Sons; 2003 Oct 21.
  59. Arodola OA, Soliman ME. Quantum mechanics implementation in drug-design workflows: does it really help?. Drug Design, Development and Therapy. 2017;11:2551.
  60. Tully JC. Perspective on “zur quantentheorie der molekeln”. Theoretical Chemistry Accounts. 2000 Feb 1;103(3-4):173-6.
  61. Tannor DJ. Introduction to quantum mechanics: a time-dependent perspective. University Science Books; 2007.
  62. Wang M, Mei Y, Ryde U. Predicting relative binding affinity using nonequilibrium QM/MM simulations. Journal of chemical theory and computation. 2018 Oct 26;14(12):6613-22.
  63. Hayik SA, Dunbrack Jr R, Merz Jr KM. Mixed quantum mechanics/molecular mechanics scoring function to predict protein− ligand binding affinity. Journal of chemical theory and computation. 2010 Oct 12;6(10):3079-91.
  64. Ryde U. QM/MM calculations on proteins. InMethods in Enzymology 2016 Jan 1 (Vol. 577, pp. 119-158). Academic Press.
  65. Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chemical science. 2017;8(4):3192-203.
  66. Zhang YJ, Khorshidi A, Kastlunger G, Peterson AA. The potential for machine learning in hybrid QM/MM calculations. The Journal of chemical physics. 2018 Jun 28;148(24):241740.
  67. Ibrić S, Đurić Z, Parojčić J, Petrović J. Artificial intelligence in pharmaceutical product formulation: neural computing. CICEQ-Chemical Industry and Chemical Engineering Quarterly. 2009;15(4):227-36.
  68. Türkoglu M, Özarslan R, Sakr A. Artificial neural network analysis of a direct compression tabletting study. European journal of pharmaceutics and biopharmaceutics. 1995;41(5):315-22.
  69. Kesavan JG, Peck GE. Pharmaceutical granulation and tablet formulation using neural networks. Pharmaceutical development and technology. 1996 Jan 1;1(4):391-404.
  70. Colbourn E, Rowe RC. Modelling and Optimization of a Formulation Using Neural Networks and Genetic Algorithms. Pharmaceutical Technology Europe. 1996;8:46-55.
  71. Rocksloh K, Rapp FR, Abed SA, Müller W, Reher M, Gauglitz G, Schmidt PC. Optimization of crushing strength and disintegration time of a high-dose plant extract tablet by neural networks. Drug development and industrial pharmacy. 1999 Jan 1;25(9):1015-25.
  72. Do QM, Dang GV, Le NQ. Le NQ. Drawing up and optimizing the formulation of Malumix tablets by an artificial intelligence system (CAD/Chem). Tap Chi Duoc Hoc. 2000;6:16-9.
  73. Chen Y, Thosar SS, Forbess RA, Kemper MS, Rubinovitz RL, Shukla AJ. Prediction of drug content and hardness of intact tablets using artificial neural network and near-infrared spectroscopy. Drug development and industrial pharmacy. 2001 Jan 1;27(7):623-31.
  74. Sathe PM, Venitz J. Comparison of neural network and multiple linear regression as dissolution predictors. Drug development and industrial pharmacy. 2003 Jan 1;29(3):349-55. R. Zolotariou, J. Anwar, J. Pharm. Pharmacol. 50 (1998) 190.
  75. Sunada H, Bi Y. Preparation, evaluation and optimization of rapidly disintegrating tablets. Powder technology. 2002 Jan 22;122(2-3):188-98.
  76. Agatonovic-Kustrin S, Glass BD, Wisch MH, Alany RG. Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology. Pharmaceutical research. 2003 Nov 1;20(11):1760-5.
  77. Chen Y, McCall TW, Baichwal AR, Meyer MC. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. Journal of controlled release. 1999 May 1;59(1):33-41.
  78. Ibrić S, Đurić Z, Parojčić J, Petrović J. Artificial intelligence in pharmaceutical product formulation: neural computing. CICEQ-Chemical Industry and Chemical Engineering Quarterly. 2009;15(4):227-36.
  79. Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. Journal of pharmaceutical sciences. 2015 Nov 1;104(11):3612-38.
  80. Ketterhagen WR, am Ende MT, Hancock BC. Process modeling in the pharmaceutical industry using the discrete element method. Journal of pharmaceutical sciences. 2009 Feb 1;98(2):442-70.
  81. Chen W, Desai D, Good D, Crison J, Timmins P, Paruchuri S, Wang J, Ha K. Mathematical model-based accelerated development of extended-release metformin hydrochloride tablet formulation. AAPS PharmSciTech. 2016 Aug 1;17(4):1007-13.
  82. Aksu B, Paradkar A, de Matas M, Özer Ö, Güneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharmaceutical development and technology. 2013 Feb 1;18(1):236-45.
  83. Drăgoi EN, Curteanu S, Fissore D. On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process. Drying Technology. 2013 Jan 2;31(1):72-81.
  84. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends in pharmacological sciences. 2019 Aug 1;40(8):577-91.
  85. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug discovery today. 2019 Mar 1;24(3):773-80.
  86. Mukherjee K. 40 Years of Trends in Pharmacological Sciences: Blending Man and Machine. Trends in pharmacological sciences. 2019 Aug 1;40(8):541-2.
  87. Singh J, Flaherty K, Sohi RS, Deeter-Schmelz D, Habel J, Le Meunier-FitzHugh K, Malshe A, Mullins R, Onyemah V. Sales profession and professionals in the age of digitization and artificial intelligence technologies: concepts, priorities, and questions. Journal of Personal Selling & Sales Management. 2019 Jan 2;39(1):2-2.
  88. Duran O, Rodriguez N, Consalter LA. Neural networks for cost estimation of shell and tube heat exchangers. Expert Systems with Applications. 2009 May 1;36(4):7435-40.
  89. Kumar K, Thakur GS. Advanced applications of neural networks and artificial intelligence: A review. International journal of information technology and computer science. 2012 Jun;4(6):57.
  90. Dou W, Lim KH, Su C, Zhou N, Cui N. Brand positioning strategy using search engine marketing. MIS quarterly. 2010 Jun 1:261-79.