Artificial Intelligence in Healthcare
AI, Machine Learning, and Deep and Intelligent Medicine Simplified for Everyone
Academic Edition, Chapter 10 - References/Further Reading
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb;542(7639):115–8.
- Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine. 2020 Jun;26(6):892–9.
- Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study. Eur Respir J. 2020;56(2).
- Gao Y, Cai G-Y, Fang W, Li H-Y, Wang S-Y, Chen L, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun. 2020 06;11(1):5033.
- Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020 Feb 20;180(4):688-702.e13.
- Chen J, Chokshi S, Hegde R, Gonzalez J, Iturrate E, Aphinyanaphongs Y, et al. Development, Implementation, and Evaluation of a Personalized Machine Learning Algorithm for Clinical Decision Support: Case Study With Shingles Vaccination. J Med Internet Res. 2020 29;22(4):e16848.
- Chen Z, Rollo B, Antonic-Baker A, Anderson A, Ma Y, O’Brien TJ, et al. New era of personalised epilepsy management. BMJ [Internet]. 2020 Oct 9 [cited 2020 Nov 11];371. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541035/
- Yoo TK, Ryu IH, Choi H, Kim JK, Lee IS, Kim JS, et al. Explainable Machine Learning Approach as a Tool to Understand Factors Used to Select the Refractive Surgery Technique on the Expert Level. Transl Vis Sci Technol [Internet]. [cited 2020 Nov 11];9(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346876/
- Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW. Supervised autonomous robotic soft tissue surgery. Science Translational Medicine. 2016 May 4;8(337):337ra64-337ra64.
- Baghdadi A, Hoshyarmanesh H, de Lotbiniere-Bassett MP, Choi SK, Lama S, Sutherland GR. Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device. Expert Rev Med Devices. 2020 Jul;17(7):721–30.
- Fard MJ, Ameri S, Darin Ellis R, Chinnam RB, Pandya AK, Klein MD. Automated robot-assisted surgical skill evaluation: Predictive analytics approach. Int J Med Robot. 2018 Feb;14(1).
- Shih H, Rajendran S. Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting Taiwan Blood Services Foundation’s Blood Supply. J Healthc Eng. 2019;2019:6123745.
- Srinivas S. A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers. Int J Environ Res Public Health. 2020 24;17(10).
- Bressem KK, Adams LC, Gaudin RA, Tröltzsch D, Hamm B, Makowski MR, et al. Highly accurate classification of chest radiographic reports using a deep learning natural language model pretrained on 3.8 million text reports. Bioinformatics. 2020 Jul 23;
- Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson [Internet]. 2019 Oct 7 [cited 2020 Nov 11];21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778980/
- Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nature Medicine. 2019 Jan;25(1):24–9.
- Shahid N, Rappon T, Berta W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLOS ONE. 2019 Feb 19;14(2):e0212356.
- Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018 Jun 22;9(4):611–29.
- Team TA. Main Types of Neural Networks and its Applications — Tutorial [Internet]. Medium. 2020 [cited 2020 Nov 11]. Available from: https://medium.com/towards-artificial-intelligence/main-types-of-neural-networks-and-its-applications-tutorial-734480d7ec8e
- Xu S, Wang Z, Sun J, Zhang Z, Wu Z, Yang T, et al. Using a deep recurrent neural network with EEG signal to detect Parkinson’s disease. Ann Transl Med [Internet]. 2020 Jul [cited 2020 Nov 11];8(14). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396761/
- Pathan RK, Biswas M, Khandaker MU. Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model. Chaos Solitons Fractals. 2020 Sep;138:110018.
- Lin E, Lin C-H, Lane H-Y. Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design. Molecules [Internet]. 2020 Jul 16 [cited 2020 Nov 11];25(14). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397124/
- Jin L, Tan F, Jiang S. Generative Adversarial Network Technologies and Applications in Computer Vision. Comput Intell Neurosci [Internet]. 2020 Aug 1 [cited 2020 Nov 11];2020. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416236/
- Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:181004805 [cs] [Internet]. 2019 May 24 [cited 2020 Jul 26]; Available from: http://arxiv.org/abs/1810.04805
- Carneiro G, Mateus D, Loïc P, Bradley A, Tavares JMRS, Belagiannis V, et al., editors. Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings [Internet]. Springer International Publishing; 2016 [cited 2020 Nov 11]. (Image Processing, Computer Vision, Pattern Recognition, and Graphics). Available from: https://www.springer.com/gp/book/9783319469751
- Startup Aids Annotators of Healthcare Training Data | NVIDIA Blog [Internet]. The Official NVIDIA Blog. 2019 [cited 2020 Nov 11]. Available from: https://blogs.nvidia.com/blog/2019/10/17/ai-healthcare-training-data/
- Murgia M. AI’s new workforce: the data-labelling industry spreads globally [Internet]. 2019 [cited 2020 Nov 11]. Available from: https://www.ft.com/content/56dde36c-aa40-11e9-984c-fac8325aaa04
- Data labeling will become a game [Internet]. Investforesight. 2019 [cited 2020 Nov 11]. Available from: https://investforesight.com/data-labeling-will-become-a-game/
- Galaxy Zoo. In: Wikipedia [Internet]. 2020 [cited 2020 Nov 11]. Available from: https://en.wikipedia.org/w/index.php?title=Galaxy_Zoo&oldid=980730929
- Foldit. In: Wikipedia [Internet]. 2020 [cited 2020 Nov 11]. Available from: https://en.wikipedia.org/w/index.php?title=Foldit&oldid=988094810
- Abdollahi B, Tomita N, Hassanpour S. Data Augmentation in Training Deep Learning Models for Medical Image Analysis. In: Nanni L, Brahnam S, Brattin R, Ghidoni S, Jain LC, editors. Deep Learners and Deep Learner Descriptors for Medical Applications [Internet]. Cham: Springer International Publishing; 2020 [cited 2020 Nov 11]. p. 167–80. (Intelligent Systems Reference Library). Available from: https://doi.org/10.1007/978-3-030-42750-4_6
- Z H, F G, D Y, D R. Differential Data Augmentation Techniques for Medical Imaging Classification Tasks. AMIA Annu Symp Proc. 2017 Jan 1;2017:979–84.
- Glickman C. Data Augmentation in Medical Images [Internet]. Medium. 2020 [cited 2020 Nov 11]. Available from: https://towardsdatascience.com/data-augmentation-in-medical-images-95c774e6eaae
- Classification: ROC Curve and AUC | Machine Learning Crash Course [Internet]. Google Developers. [cited 2020 Nov 12]. Available from: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc